metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[triaquabarium(II)]-di- μ -2,4,6-trinitrophenolato- $\kappa^3 O:O',O''$;- $\kappa^3 O,O':O''$] benzimidazole disolvate]

De-Yun Ma and Guo-Hua Deng*

College of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China Correspondence e-mail: ghdeng@126.com

Received 8 May 2007; accepted 18 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.020; wR factor = 0.049; data-to-parameter ratio = 12.5.

In the title complex, {[Ba(C₆H₂N₃O₇)₂(H₂O)₃]·2C₇H₆N₂}_n, the Ba^{II} coordination polyhedron is defined by six O atoms from four 2,4,6-trinitrophenolate ligands and three water molecules, displaying a distorted monocapped square-antiprismatic geometry. Both the Ba atom and one of the coordinated water molecules lie on a twofold axis. The compound forms an infinite chain parallel to the *c* axis through κ^3 -bridging 2,4,6-trinitrophenolate ligands to the metal atoms. A supra-molecular network is formed *via* hydrogen bonding and π - π interactions involving both the chains and benzimidazole solvent molecules. The face-to-face and centroid– centroid distances between parallel 2,4,6-trinitrophenolate and benzimidazole rings of neighboring complexes are 3.509 (3) and 3.613 (2) Å, respectively.

Related literature

For related literature, see: Choi & Jeon (2003); Gu et al. (2004); Tao et al. (2000).

Experimental

Crystal data

 $\begin{bmatrix} Ba(C_6H_2N_3O_7)_2(H_2O)_3 \end{bmatrix} \cdot 2C_7H_6N_2 \\ M_r = 882.87 \\ Monoclinic, C2/c \\ a = 30.4215 (6) Å \\ b = 6.7394 (1) Å \\ c = 16.6695 (3) Å \\ \beta = 107.950 (1)^\circ \\ \end{bmatrix}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.779, T_{\rm max} = 0.797$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of
$wR(F^2) = 0.049$	independent and constrained
S = 1.03	refinement
3176 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
254 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
4 restraints	

V = 3251.27 (10) Å³

 $0.20 \times 0.18 \times 0.18 \text{ mm}$

11230 measured reflections

3176 independent reflections

2965 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.32 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.024$

Z = 4

Table 1

Selected bond lengths (Å).

Ba1—O5 Ba1—O1 <i>W</i> Ba1—O7 ⁱ	2.6451 (14) 2.683 (2) 2.8184 (15)	Ba1-O2W Ba1-O3	2.8484 (16) 2.9596 (17)

Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{O1W-H1W\cdots O2W^{ii}}$	0.80(2)	2.02 (2)	2.816 (2)	171 (6)
$O2W - H2W \cdot \cdot \cdot N1^{iii}$	0.83(2)	1.98 (2)	2.812 (2)	174 (2)
O2W−H3W···O5	0.80(2)	2.16(2)	2.768 (2)	133 (2)
$O2W - H3W \cdots O6$	0.80(2)	2.34 (2)	3.058 (2)	148 (2)
$N2-H2A\cdots O8^{iv}$	0.86	2.13	2.987 (2)	174
Symmetry codes: $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$	(ii) - <i>x</i> , <i>y</i> -	$-1, -z + \frac{1}{2};$	(iii) $-x, y, -x$	$-z + \frac{1}{2};$ (iv)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge South China University of Technology for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2054).

References

- Bruker (2004). APEX2 (Version 6.12) and SMART (Version 7.23a). Bruker AXS Inc, Madison, Wisconsin, USA.
- Choi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.
- Gu, C.-S., Liu, J.-W., Huo, L.-H., Zhao, H., Zhao, J.-G. & Gao, S. (2004). Acta Cryst. E60, 0760–0761.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.

Acta Cryst. (2007). E63, m1722-m1723 [doi:10.1107/S1600536807024610]

catena-Poly[[[triaquabarium(II)]-di- μ -2,4,6-trinitrophenolato- $\kappa^3 O:O',O'';\kappa^3 O,O':O''$] benzim-idazole disolvate]

D.-Y. Ma and G.-H. Deng

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Tao *et al.*, 2000; Choi & Jeon, 2003). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as on the influence of weaker non-covalent interactions, such as hydrogen bonds and π - π stacking interactions. In this sense, 2,4,6-trinitrophenolate is an excellent candidante for the construction of supramolecular complexes, since it not only displays multiple coordination modes but also can form regular hydrogen bonds by functioning both as hydrogen-bond donor and acceptor (Gu *et al.*, 2004). In the present paper, we report the novel title Ba polymer (I).

Fig. 1 shows its molecular diagram: the Ba^{II} atom lies on a two fold axis and presents a distorted mono-capped square antiprism geometry, defined by six O atoms from four 2,4,6-trinitrophenolate ligands, and three water molecules, one of which is also bisected by the diad. The compound forms an infinite chain parallel to the *c* axis through κ_3 bridging 2,4,6-trinitrophenolate ligands to the metal atoms, with the adjacent Ba···Ba distance being 8.362 (3) /%A. Inter/intramolecular (O—H···O and N—H···O) hydrogen bonding (Table 2) and π ··· π interactions involving both the chains and independent benzimidazole molecules stabilize the supramolecular network (Fig. 2). The face-to-face and centroid-centroid distances between parallel 2,4,6-trinitrophenolate and benzimidazole of neighboring complexes are 3.509 (3) and 3.613 (2) Å, respectively.

Experimental

The title complex was prepared by the addition of a stoichiometric amount of barium chloride (20 mmol) and benzimidazole (20 mmol) to a hot aqueous solution(25 ml) of 2,4,6-trinitrophenolate (20 mmol). the PH was then adjusted to 7.0 to 8.0 with NaOH (30 mmol). The resulting solution was filtered, and yellow single crystals were obtained at room temperature over several days. (yield, 58%).

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 (1) Å and H…H = 1.29 (1) Å. In all cases, $U_{iso}(H) = 1.2 U_{eq}(Host)$.

Figures

Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry code: (i) -x, y, 1/2 - z; (ii) x, 1 - y, -1/22 + z; (iii) -x, 1 - y, 1 - z.

Fig. 2. A packing view of (I), Hydrogen bonds are shown as dashed lines.

catena-Poly[[[triaquabarium(II)]-di- μ -2,4,6-trinitrophenolato- $\kappa^3 O$,O':O''; $\kappa^3 O$:O',O''] benzimidazole disolvate]

Crystal data	
[Ba(C ₆ H ₂ N ₃ O ₇) ₂ (H ₂ O) ₃] _. 2C ₇ H ₆ N ₂	$F_{000} = 1756$
$M_r = 882.87$	$D_{\rm x} = 1.804 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3200 reflections
<i>a</i> = 30.4215 (6) Å	$\theta = 1.7 - 28.0^{\circ}$
b = 6.73940 (10) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 16.6695 (3) Å	T = 293 (2) K
$\beta = 107.9500 \ (10)^{\circ}$	Block, yellow
$V = 3251.27 (10) \text{ Å}^3$	$0.20\times0.18\times0.18\ mm$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer	3176 independent reflections
Radiation source: fine-focus sealed tube	2965 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -37 \rightarrow 37$
$T_{\min} = 0.779, T_{\max} = 0.797$	$k = -8 \rightarrow 8$
11230 measured reflections	$l = -20 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.049$	$w = 1/[\sigma^2(F_0^2) + (0.0238P)^2 + 2.8124P]$ where $P = (F_0^2 + 2F_0^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} = 0.001$
3176 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
254 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ba1	0.0000	0.54969 (3)	0.2500	0.02678 (6)	
C1	0.12475 (6)	0.8786 (3)	0.04517 (13)	0.0305 (4)	
C2	0.09690 (7)	0.8776 (3)	-0.03851 (14)	0.0385 (5)	
H2	0.0649	0.8729	-0.0523	0.046*	
C3	0.11831 (9)	0.8839 (4)	-0.10030 (15)	0.0479 (6)	
Н3	0.1003	0.8835	-0.1566	0.058*	
C4	0.16600 (10)	0.8909 (4)	-0.08066 (17)	0.0533 (6)	
H4	0.1791	0.8943	-0.1242	0.064*	
C5	0.19433 (8)	0.8930 (4)	0.00113 (18)	0.0493 (6)	
Н5	0.2263	0.8986	0.0140	0.059*	
C6	0.17305 (7)	0.8863 (3)	0.06404 (14)	0.0359 (5)	
C7	0.15304 (9)	0.8749 (4)	0.17941 (15)	0.0477 (6)	
H7	0.1558	0.8714	0.2365	0.057*	
C8	0.08615 (6)	0.6307 (3)	0.46576 (12)	0.0271 (4)	
C9	0.08875 (6)	0.6439 (3)	0.55372 (12)	0.0272 (4)	
C10	0.12886 (6)	0.6317 (3)	0.61992 (12)	0.0292 (4)	
H10	0.1282	0.6347	0.6753	0.035*	
C11	0.17024 (6)	0.6148 (3)	0.60218 (12)	0.0315 (4)	
C12	0.17172 (6)	0.6059 (3)	0.52008 (13)	0.0313 (4)	
H12	0.1999	0.5963	0.5096	0.038*	
C13	0.13161 (6)	0.6113 (3)	0.45470 (12)	0.0279 (4)	
N1	0.11318 (6)	0.8717 (3)	0.11972 (11)	0.0399 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N2	0.18963 (6)	0.8836 (3)	0.15040 (12)	0.0473 (5)	
H2A	0.2182	0.8869	0.1805	0.057*	
N3	0.04662 (5)	0.6730 (3)	0.57559 (10)	0.0339 (4)	
N4	0.21295 (6)	0.6097 (3)	0.67093 (12)	0.0424 (5)	
N5	0.13605 (6)	0.6021 (3)	0.37039 (11)	0.0360 (4)	
O3	0.10196 (6)	0.5831 (3)	0.30871 (10)	0.0606 (5)	
O4	0.17466 (6)	0.6120 (3)	0.36322 (11)	0.0598 (5)	
O5	0.04921 (5)	0.6328 (3)	0.40711 (9)	0.0435 (4)	
O6	0.01290 (5)	0.7470 (3)	0.52530 (10)	0.0633 (6)	
07	0.04724 (6)	0.6278 (3)	0.64730 (10)	0.0519 (4)	
O8	0.21155 (6)	0.6352 (3)	0.74293 (10)	0.0619 (5)	
O9	0.24904 (5)	0.5800 (4)	0.65494 (12)	0.0718 (6)	
O1W	0.0000	0.1516 (4)	0.2500	0.0525 (6)	
H1W	0.010 (2)	0.076 (7)	0.224 (3)	0.063*	0.50
O2W	-0.03027 (5)	0.8540 (3)	0.33929 (9)	0.0395 (3)	
H2W	-0.0537 (6)	0.862 (4)	0.3550 (14)	0.047*	
H3W	-0.0098 (6)	0.828 (4)	0.3817 (12)	0.047*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.02865 (9)	0.03324 (10)	0.01903 (9)	0.000	0.00817 (6)	0.000
C1	0.0307 (9)	0.0268 (10)	0.0341 (11)	-0.0013 (8)	0.0100 (8)	0.0007 (9)
C2	0.0359 (10)	0.0342 (11)	0.0396 (12)	-0.0017 (9)	0.0032 (9)	0.0005 (10)
C3	0.0684 (16)	0.0406 (13)	0.0320 (12)	0.0008 (12)	0.0115 (11)	0.0007 (10)
C4	0.0746 (17)	0.0451 (14)	0.0534 (16)	0.0002 (13)	0.0391 (14)	0.0019 (12)
C5	0.0383 (12)	0.0454 (14)	0.0713 (18)	-0.0008 (10)	0.0275 (12)	0.0008 (13)
C6	0.0314 (10)	0.0311 (11)	0.0421 (12)	0.0003 (8)	0.0068 (9)	0.0010 (9)
C7	0.0648 (15)	0.0461 (14)	0.0298 (12)	-0.0031 (12)	0.0113 (11)	0.0018 (11)
C8	0.0278 (9)	0.0288 (10)	0.0240 (9)	-0.0007 (8)	0.0071 (7)	-0.0014 (8)
C9	0.0287 (9)	0.0290 (10)	0.0253 (9)	-0.0015 (8)	0.0103 (7)	0.0002 (8)
C10	0.0345 (10)	0.0312 (10)	0.0212 (9)	-0.0022 (8)	0.0077 (8)	0.0011 (8)
C11	0.0279 (9)	0.0356 (11)	0.0262 (10)	-0.0016 (8)	0.0013 (8)	0.0015 (9)
C12	0.0277 (9)	0.0356 (11)	0.0319 (11)	0.0001 (8)	0.0111 (8)	-0.0001 (9)
C13	0.0319 (9)	0.0304 (10)	0.0221 (9)	0.0000 (8)	0.0095 (8)	0.0002 (8)
N1	0.0440 (10)	0.0407 (10)	0.0374 (10)	-0.0024 (9)	0.0162 (8)	0.0013 (9)
N2	0.0378 (10)	0.0503 (12)	0.0425 (11)	-0.0018 (9)	-0.0044 (8)	0.0017 (10)
N3	0.0321 (8)	0.0442 (11)	0.0277 (9)	-0.0011 (8)	0.0125 (7)	-0.0029 (8)
N4	0.0318 (9)	0.0544 (12)	0.0343 (10)	-0.0038 (8)	0.0001 (8)	0.0048 (9)
N5	0.0399 (9)	0.0436 (11)	0.0277 (9)	0.0011 (8)	0.0150 (8)	0.0003 (8)
O3	0.0454 (9)	0.1133 (18)	0.0223 (8)	-0.0046 (10)	0.0093 (7)	-0.0052 (9)
O4	0.0453 (9)	0.1017 (16)	0.0418 (9)	-0.0006 (10)	0.0271 (8)	-0.0007 (10)
O5	0.0289 (7)	0.0726 (11)	0.0250 (7)	0.0029 (7)	0.0024 (6)	-0.0088 (8)
O6	0.0397 (8)	0.1134 (17)	0.0381 (9)	0.0293 (10)	0.0138 (7)	0.0088 (10)
O7	0.0503 (9)	0.0778 (12)	0.0364 (9)	0.0007 (9)	0.0266 (7)	0.0122 (9)
08	0.0438 (9)	0.1064 (16)	0.0276 (9)	-0.0049 (10)	-0.0006 (7)	0.0031 (10)
09	0.0275 (8)	0.130 (2)	0.0517 (11)	0.0076 (10)	0.0033 (8)	-0.0012 (11)
O1W	0.0769 (17)	0.0340 (13)	0.0618 (17)	0.000	0.0435 (14)	0.000

Geometric parameters (Å, °)Ba1-O52.6451 (14)C8-O51.242 (2)Ba1-O5'2.6451 (14)C8-C91.447 (3)Ba1-O1W2.683 (2)C9-C101.372 (3)Ba1-O7 ⁱⁱ 2.8184 (15)C9-C101.372 (3)Ba1-O2W'2.8184 (15)C9-C111.384 (3)Ba1-O2W'2.8484 (16)C10-C111.384 (3)Ba1-O2W2.8484 (16)C10-H100.9300Ba1-O32.9596 (17)C11-C121.384 (3)Ba1-O3'2.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-C41.393 (3)C12-H120.9300C1-C61.406 (3)C13-N51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C51.391 (3)OY-Ba1 ^{iti} 2.8184 (15)C6-N21.371 (3)OIW-H1W0.80 (2)C7-N11.310 (3)02W-H2W0.83 (2)C7-N21.345 (3)02W-H2W0.83 (2)C7-N41.345 (3)02W-H2W0.83 (2)C7-N51.55 (6)C2-C3-H3119.1C5-Ba1-O5 ⁱ 1.55 (6)C2-C3-H319.1C5-Ba1-O7 ⁱⁱ 1.68 (5)C3-C4-H419.1C5-Ba1-O7 ⁱⁱ 1.18 (5)C3-C4-H419.1 <trr>C5-Ba1-O7</trr>	O2W	0.0390 (8)	0.0474 (9)	0.0345 (8)	0.0063 (7)	0.0152 (6)	0.0028 (8)
Bal-O52.6451 (14)C8-O51.242 (2)Bal-O5'2.6451 (14)C8-C91.447 (3)Bal-O1W2.683 (2)C8-C131.456 (3)Bal-O7''2.8184 (15)C9-C101.372 (3)Bal-O2W'2.8184 (15)C9-N31.450 (2)Bal-O2W'2.8484 (16)C10-C111.384 (3)Bal-O2W2.8484 (16)C10-H100.9300Bal-O32.9596 (17)C11-C121.384 (3)Bal-O3'2.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-C41.393 (3)C12-H120.9300C1-C61.406 (3)C13-H51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C4-C51.370 (4)N4-O91.225 (2)C4-C51.370 (4)N4-O91.226 (2)C4-C51.370 (4)N4-O91.226 (2)C4-C51.370 (3)N5-O31.221 (2)C5-C61.393 (3)N5-O31.221 (2)C5-C61.393 (3)O1W-H1W0.80 (2)C7-N11.310 (3)0.2W-H2W0.83 (2)C7-N21.345 (3)0.2W-H2W0.83 (2)C7-N41.310 (3)0.2W-H2W0.81 (2)C5-Ba1-O7'i1.689 (5)C5-C4-H3119.1O5'-Ba1-O7'i16.89 (5)C5-C4-H4119.1O5'-Ba1-O7'ii14.18 (5)C3-C4-H4119.1 <tr< td=""><td>Geometric paran</td><td>neters (Å, °)</td><td></td><td></td><td></td><td></td><td></td></tr<>	Geometric paran	neters (Å, °)					
Bal-OsiDifferenceDifferenceDifferenceBal-Osi2.6451 (14)C8-C91.447 (3)Bal-O1W2.683 (2)C8-C131.456 (3)Bal-O7ii2.8184 (15)C9-C101.372 (3)Bal-O2Wi2.8184 (15)C9-N31.450 (2)Bal-O2Wi2.8484 (16)C10-C111.384 (3)Bal-O32.9596 (17)C11-C121.384 (3)Bal-O3i2.9596 (17)C11-C121.384 (3)Bal-O3i2.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-C41.393 (3)C12-H120.9300C1-C61.406 (3)C13-N51.454 (2)C2-C31.370 (4)N4-O91.228 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C41.393 (3)N5-O31.221 (2)C5-C61.393 (3)N5-O31.221 (2)C5-C61.393 (3)O1W-H1W0.80 (2)C7-N11.310 (3)02W-H2W0.83 (2)C7-N21.345 (3)02W-H2W0.83 (2)C7-N40.9300C1-C4-C3119.1Osi-Ba1-Osi1.55.56 (8)C2-C3-H3119.1Osi-Ba1-Osi1.689 (5)C5-C4-C4-C3121.8 (2)Osi-Ba1-O7ii16.89 (5)C5-C4-H4119.1Osi-Ba1-O7ii14.18 (5)C3-C4-H411	Ba1—O5		2.6451 (14)	C8—(05		1.242 (2)
Bal-OIW2.683 (2)C8-C131.456 (3)Bal-O7 ⁱⁱ 2.8184 (15)C9-C101.372 (3)Bal-O2W2.8184 (15)C9-N31.450 (2)Bal-O2W2.8484 (16)C10-C111.384 (3)Bal-O32.9596 (17)C11-C121.384 (3)Bal-O32.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-C41.393 (3)C12-H120.9300C1-C51.466 (3)C13-N51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C51.393 (3)N5-O41.219 (2)C5-H50.930007-Bal ⁱⁱⁱ 2.8184 (15)C6-N21.371 (3)OIW-HIW0.80 (2)C7-N11.310 (3)02W-H2W0.83 (2)C7-N21.345 (3)02W-H3W0.80 (2)C7-N470.9300C2-C4-C3119.1OS'-Bal-O5 ⁱ 155.66 (8)C2-C4-C3121.8 (2)OS-Bal-O7 ⁱⁱ 16.89 (5)C5-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 14.18 (5)C3-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H5121.5	Ba1—O5 ⁱ		2.6451 (14)	C8—0	C9		1.447 (3)
$Bal-O7^{ii}$ 2.8184 (15) $C9-C10$ 1.372 (3) $Bal-O7^{iii}$ 2.8184 (15) $C9-N3$ 1.450 (2) $Bal-O2W^i$ 2.8484 (16) $C10-C11$ 1.384 (3) $Bal-O3$ 2.9596 (17) $C11-C12$ 1.384 (3) $Bal-O3^i$ 2.9596 (17) $C11-C12$ 1.384 (3) $Bal-O3^i$ 2.9596 (17) $C11-C12$ 1.384 (3) $C1-C2$ 1.391 (3) $C12-C13$ 1.363 (3) $C1-C4$ 1.393 (3) $C12-H12$ 0.9300 $C1-C5$ 1.496 (3) $C13-N5$ 1.454 (2) $C2-C3$ 1.379 (3) $N2-H2A$ 0.8600 $C2-H2$ 0.9300 $N3-O6$ 1.214 (2) $C3-C4$ 1.386 (4) $N3-O7$ 1.228 (2) $C3-C4$ 1.370 (4) $N4-O8$ 1.226 (2) $C4-C5$ 1.370 (4) $N4-O8$ 1.216 (2) $C4-C5$ 1.370 (4) $N5-O3$ 1.221 (2) $C5-C6$ 1.393 (3) $N5-O3$ 1.221 (2) $C5-C6$ 1.393 (3) $0.9W-H1W$ 0.80 (2) $C7-N1$ 1.310 (3) $02W-H2W$ 0.88 (2) $C7-N2$ 1.345 (3) $02W-H2W$ 0.80 (2) $C7-H7$ 0.9300 $C2-C3-H3$ 119.1 $O5-Ba1-O5^{ii}$ 15.56 (8) $C2-C3-H3$ 119.1 $O5^{i}-Ba1-O1W$ 102.22 (4) $C5-C4-C3$ 121.8 (2) $O5-Ba1-O7^{ii}$ 116.89 (5) $C3-C4-H4$ 19.1 $OS^{i}-Ba1-O7^{ii}$ 74.18 (5) $C3-C4-H5$ 16.9 (2) $O5-Ba1-O7^$	Ba1—O1W		2.683 (2)	C8—0	C13		1.456 (3)
Bal- $O7^{iii}$ 2.8184 (15)C9-N31.450 (2)Bal- $O2W^i$ 2.8484 (16)C10-C111.384 (3)Bal- $O2W$ 2.8484 (16)C10-H100.9300Bal- $O3$ 2.9596 (17)C11-C121.384 (3)Bal- $O3^i$ 2.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-N11.393 (3)C12-H120.9300C2-C31.379 (3)N2-H2A0.8600C2-C41.386 (4)N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-C41.370 (4)N4-O81.226 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C51.370 (4)N5-O31.221 (2)C5-C61.393 (3)N5-O31.221 (2)C5-C61.393 (3)O2W-H2W0.880 (2)C7-N11.310 (3)O2W-H2W0.881 (2)C7-N21.345 (3)O2W-H3W0.80 (2)C7-N470.9300TTO5-Ba1-O5 ⁱ 155.56 (8)C2-C3-H3119.1O5'-Ba1-O1W102.22 (4)C5-C4-C3121.8 (2)O5-Ba1-O7 ⁱⁱ 7.418 (5)C3-C4-H4119.1OS'-Ba1-O7 ⁱⁱⁱ 16.89 (5)C5-C4-H4119.1OS'-Ba1-O7 ⁱⁱⁱ 7.418 (5)C3-C4-H5121.5	Ba1—O7 ⁱⁱ		2.8184 (15)	С9—С	C10		1.372 (3)
Bal-O2Wi2.8484 (16)C10-C111.384 (3)Bal-O2W2.8484 (16)C10-H100.9300Bal-O32.9596 (17)C11-C121.384 (3)Bal-O3i2.9596 (17)C11-C121.384 (3)Bal-O3i2.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-C41.393 (3)C12-H120.9300C1-C61.406 (3)C13-N51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-C51.370 (4)N4-O81.219 (2)C5-C61.393 (3)N5-O31.221 (2)C5-H50.9300O7-Bal ⁱⁱⁱ 2.8184 (15)C6-N21.371 (3)O1W-H1W0.80 (2)C7-N11.310 (3)02W-H2W0.83 (2)C7-N21.345 (3)O2W-H3W0.80 (2)C7-H70.9300C1.21.8 (2)O5-Bal-O5 ⁱ 155.56 (8)C2-C3-H3119.1O5'-Bal-O1W102.22 (4)C5-C4-C3121.8 (2)O5-Bal-O7 ⁱⁱ 116.89 (5)C5-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 14.8 (5)C3-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1OS'-Bal-O7 ⁱⁱⁱ 64.88 (4)C4-C5-C6<	Ba1—O7 ⁱⁱⁱ		2.8184 (15)	C9—N	N3		1.450 (2)
Bal-O2W2.848 (16)C10-H100.9300Bal-O32.9596 (17)C11-C121.384 (3)Bal-O32.9596 (17)C11-N41.444 (2)C1-C21.391 (3)C12-C131.363 (3)C1-N11.993 (3)C12-H120.9300C1-C61.406 (3)C13-N51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-H40.9300N5-O41.219 (2)C5-C61.393 (3)N5-O31.221 (2)C5-H50.9300O7-Bal ^{iti} 2.8184 (15)C6-N21.371 (3)O1W-H1W0.800 (2)C7-N11.310 (3)0.2W-H2W0.83 (2)C7-N21.345 (3)0.2W-H3W0.80 (2)C7-N40.930007-Bal ^{iti} 1.91.1O5-Ba1-O5 ⁱ 155.56 (8)C2-C3-H3119.1O5-Ba1-O1W102.22 (4)C4-C3-H3119.1O5-Ba1-O1W102.22 (4)C5-C4-C3121.8 (2)O5-Ba1-O7 ⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H5121.5	Ba1—O2W ⁱ		2.8484 (16)	C10—	-C11		1.384 (3)
Bal-O3 $2.9596(17)$ $C11-C12$ $1.384(3)$ Bal-O3 ⁱ $2.9596(17)$ $C11-N4$ $1.444(2)$ $C1-C2$ $1.391(3)$ $C12-C13$ $1.363(3)$ $C1-R1$ $1.393(3)$ $C12-H12$ 0.9300 $C1-C6$ $1.406(3)$ $C13-N5$ $1.454(2)$ $C2-C3$ $1.379(3)$ $N2-H2A$ 0.8600 $C2-H2$ 0.9300 $N3-O6$ $1.214(2)$ $C3-C4$ $1.386(4)$ $N3-O7$ $1.228(2)$ $C3-H3$ 0.9300 $N4-O9$ $1.223(2)$ $C4-C5$ $1.370(4)$ $N4-O8$ $1.226(2)$ $C4-C5$ $1.370(4)$ $N4-O8$ $1.226(2)$ $C5-C6$ $1.393(3)$ $N5-O3$ $1.221(2)$ $C5-R5$ 0.9300 $07-Ba1^{iii}$ $2.8184(15)$ $C6-N2$ $1.371(3)$ $01W-H1W$ $0.80(2)$ $C7-N1$ $1.310(3)$ $02W-H2W$ $0.83(2)$ $C7-N2$ $1.345(3)$ $02W-H3W$ $0.80(2)$ $C7-H7$ 0.9300 $C-C3-H3$ 119.1 $O5^{i}-Ba1-O5^{i}$ $155.56(8)$ $C2-C3-H3$ 119.1 $O5^{i}-Ba1-O1W$ $102.22(4)$ $C5-C4-C3$ $121.8(2)$ $O5-Ba1-O7^{ii}$ $16.89(5)$ $C3-C4-H4$ 119.1 $O5^{i}-Ba1-O7^{ii}$ $74.18(5)$ $C3-C4-H4$ 119.1 $O1W-Ba1-O7^{ii}$ $64.88(4)$ $C4-C5-C6$ $116.9(2)$ $O5-Ba1-O7^{iii}$ $74.18(5)$ $C3-C4-H5$ 121.5	Ba1—O2W		2.8484 (16)	C10—	-H10		0.9300
Ba1- -03^i 2.9596 (17)C11- $-N4$ 1.444 (2)C1- $-C2$ 1.391 (3)C12- $-C13$ 1.363 (3)C1- $-N1$ 1.393 (3)C12- $-H12$ 0.9300C1- $-C6$ 1.406 (3)C13- $N5$ 1.454 (2)C2- $-C3$ 1.379 (3) $N2-H2A$ 0.8600C2- $H2$ 0.9300 $N3-O6$ 1.214 (2)C3- $-C4$ 1.386 (4) $N3-O7$ 1.228 (2)C3- $H3$ 0.9300 $N4-O9$ 1.223 (2)C4- $-C5$ 1.370 (4) $N4-O8$ 1.226 (2)C4- $-H4$ 0.9300 $N5-O4$ 1.219 (2)C5- $-C6$ 1.393 (3) $N5-O3$ 1.221 (2)C5- $-H5$ 0.9300 $O7Ba1^{iii}$ 2.8184 (15)C6- $N2$ 1.371 (3) $O1W-H1W$ 0.80 (2)C7- $-N1$ 1.310 (3) $O2W-H2W$ 0.83 (2)C7- $-N2$ 1.345 (3) $O2W-H3W$ 0.80 (2)C7- $-H7$ 0.9300 $C-C3-H3$ 119.1O5- $-Ba1-O5^i$ 155.56 (8) $C2-C3-H3$ 119.1O5- $-Ba1-O1W$ 102.22 (4)C5- $C4-C3$ 121.8 (2)O5- $-Ba1-O7^{ii}$ 116.89 (5)C5- $C4-H4$ 119.1Of- $-Ba1-O7^{ii}$ 74.18 (5)C3- $C4-H4$ 119.1O1W- $-Ba1-O7^{ii}$ 64.88 (4)C4- $C5-C6$ 116.9 (2)O5- $-Ba1-O7^{iii}$ 74.18 (5)C3- $C4-H5$ 121.5	Ba1—O3		2.9596 (17)	C11—	-C12		1.384 (3)
C1-C21.391 (3)C12-C131.363 (3)C1-N11.393 (3)C12-H120.9300C1-C61.406 (3)C13-N51.454 (2)C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-H40.9300N5-O41.219 (2)C5-C61.393 (3)N5-O31.221 (2)C5-H50.930007-Ba1 ⁱⁱⁱ 2.8184 (15)C6-N21.371 (3)O1W-H1W0.80 (2)C7-N11.310 (3)02W-H3W0.80 (2)C7-N21.345 (3)02W-H3W0.80 (2)C7-H70.93007119.1O5-Ba1-O5 ⁱ 155.56 (8)C2-C3-H3119.1O5 ⁱ -Ba1-O1 ⁱⁱ 10.22 (4)C5-C4-C3121.8 (2)O5-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 74.18 (5)C3-C4-H4119.1	Ba1—O3 ⁱ		2.9596 (17)	C11—	-N4		1.444 (2)
C1N11.393 (3)C12H120.9300C1C61.406 (3)C13N51.454 (2)C2C31.379 (3)N2H2A0.8600C2H20.9300N3O61.214 (2)C3C41.386 (4)N3O71.228 (2)C3H30.9300N4O91.223 (2)C4C51.370 (4)N4O81.226 (2)C4H40.9300N5O41.219 (2)C5C61.393 (3)N5O31.221 (2)C5H50.9300O7Ba1 ⁱⁱⁱ 2.8184 (15)C6N21.371 (3)O1WH1W0.80 (2)C7N11.310 (3)O2W-H2W0.83 (2)C7N21.345 (3)O2W-H3W0.80 (2)C7H70.9300O5Ba1O5 ⁱ 155.56 (8)C2C3H3119.1O5 ⁱ -Ba1-O1W102.22 (4)C5C4C3121.8 (2)O5Ba1-O7 ⁱⁱ 116.89 (5)C5C4H4119.1O1WBa1-O7 ⁱⁱⁱ 64.88 (4)C4C5C6116.9 (2)O5Ba1O7 ⁱⁱⁱ 74.18 (5)C3C4H5121.5	C1—C2		1.391 (3)	C12—	-C13		1.363 (3)
C1C61.406 (3)C13N51.454 (2)C2C31.379 (3)N2H2A0.8600C2H20.9300N3O61.214 (2)C3C41.386 (4)N3O71.228 (2)C3H30.9300N4O91.223 (2)C4C51.370 (4)N4O81.226 (2)C4H40.9300N5O41.219 (2)C5C61.393 (3)N5O31.221 (2)C5H50.9300O7Ba1 ⁱⁱⁱ 2.8184 (15)C6N21.371 (3)O1WH1W0.80 (2)C7N11.310 (3)O2WH2W0.83 (2)C7N21.345 (3)O2WH3W0.80 (2)C7N41.55.56 (8)C2C3H3119.1O5-Ba1-O5 ⁱ 155.56 (8)C2C3H3119.1O5 ⁱ -Ba1-O1W102.22 (4)C5C4C3121.8 (2)O5-Ba1-O7 ⁱⁱ 116.89 (5)C5C4H4119.1O5 ⁱ -Ba1-O7 ⁱⁱⁱ 74.18 (5)C3C4H4119.1O1WBa1-O7 ⁱⁱⁱ 64.88 (4)C4C5C6116.9 (2)O5Ba1-O7 ⁱⁱⁱ 74.18 (5)C4C5H5121.5	C1—N1		1.393 (3)	C12—	-H12		0.9300
C2-C31.379 (3)N2-H2A0.8600C2-H20.9300N3-O61.214 (2)C3-C41.386 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-H40.9300N5-O41.219 (2)C5-C61.393 (3)N5-O31.221 (2)C5-H50.9300O7-Ba1 ⁱⁱⁱ 2.8184 (15)C6-N21.371 (3)O1W-H1W0.80 (2)C7-N11.310 (3)O2W-H2W0.83 (2)C7-N21.345 (3)O2W-H3W0.80 (2)C7-H70.9300	C1—C6		1.406 (3)	C13—	-N5		1.454 (2)
C2-H2 0.9300 N3-O6 $1.214 (2)$ C3-C4 $1.386 (4)$ N3-O7 $1.228 (2)$ C3-H3 0.9300 N4-O9 $1.223 (2)$ C4-C5 $1.370 (4)$ N4-O8 $1.226 (2)$ C4-H4 0.9300 N5-O4 $1.219 (2)$ C5-C6 $1.393 (3)$ N5-O3 $1.221 (2)$ C5-H5 0.9300 $07-Ba1^{iii}$ $2.8184 (15)$ C6-N2 $1.371 (3)$ $01W-H1W$ $0.80 (2)$ C7-N1 $1.310 (3)$ $02W-H2W$ $0.83 (2)$ C7-N2 $1.345 (3)$ $02W-H3W$ $0.80 (2)$ C7-H7 0.9300 $$	C2—C3		1.379 (3)	N2—I	H2A		0.8600
C3-C41.380 (4)N3-O71.228 (2)C3-H30.9300N4-O91.223 (2)C4-C51.370 (4)N4-O81.226 (2)C4-H40.9300N5-O41.219 (2)C5-C61.393 (3)N5-O31.221 (2)C5-H50.9300O7-Bal ¹ⁱⁱ 2.8184 (15)C6-N21.371 (3)O1W-H1W0.80 (2)C7-N11.310 (3)O2W-H2W0.83 (2)C7-N21.345 (3)O2W-H3W0.80 (2)C7-H70.9300	C2—H2		0.9300	N3—0	D6		1.214 (2)
C3 HDC1300H1 C3H225 (2)C4—C51.370 (4)N4—O81.226 (2)C4—H40.9300N5—O41.219 (2)C5—C61.393 (3)N5—O31.221 (2)C5—H50.9300O7—Ba1 ⁱⁱⁱ 2.8184 (15)C6—N21.371 (3)O1W—H1W0.80 (2)C7—N11.310 (3)O2W—H2W0.83 (2)C7—N21.345 (3)O2W—H3W0.80 (2)C7—H70.9300CCO5—Ba1—O5 ⁱ 155.56 (8)C2—C3—H3119.1O5—Ba1—O1W102.22 (4)C4—C3—H3119.1O5 ⁱ —Ba1—O1W102.22 (4)C5—C4—C3121.8 (2)O5—Ba1—O7 ⁱⁱ 116.89 (5)C5—C4—H4119.1Os ⁱ —Ba1—O7 ⁱⁱ 74.18 (5)C3—C4—H4119.1O1W—Ba1—O7 ⁱⁱⁱ 74.18 (5)C4—C5—C6116.9 (2)O5—Ba1—O7 ⁱⁱⁱ 74.18 (5)C4—C5—H5121.5	C3—C4		0.9300	N3—(9		1.228(2) 1.223(2)
C4—H40.9300N5—O41.219 (2)C5—C61.393 (3)N5—O31.221 (2)C5—H50.9300O7—Ba1 ⁱⁱⁱ 2.8184 (15)C6—N21.371 (3)O1W—H1W0.80 (2)C7—N11.310 (3)O2W—H2W0.83 (2)C7—N21.345 (3)O2W—H3W0.80 (2)C7—H70.9300	C4—C5		1.370 (4)	N4-0	D8		1.225 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4—H4		0.9300	N5—0	D4		1.219 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6		1.393 (3)	N5—0	03		1.221 (2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—Н5		0.9300	07—I	Bal ⁱⁱⁱ		2.8184 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N2		1.371 (3)	O1W-	—H1W		0.80 (2)
C7-N2 $1.345 (3)$ O2W-H3W $0.80 (2)$ C7-H7 0.9300 $05-Ba1-O5^{i}$ $155.56 (8)$ $C2-C3-H3$ 119.1 O5-Ba1-O1W $102.22 (4)$ $C4-C3-H3$ 119.1 O5 ⁱ -Ba1-O1W $102.22 (4)$ $C5-C4-C3$ $121.8 (2)$ O5-Ba1-O7 ⁱⁱ $116.89 (5)$ $C5-C4-H4$ 119.1 O5 ⁱ -Ba1-O7 ⁱⁱ $74.18 (5)$ $C3-C4-H4$ 119.1 O1W-Ba1-O7 ⁱⁱⁱ $64.88 (4)$ $C4-C5-C6$ $116.9 (2)$ O5-Ba1-O7 ⁱⁱⁱ $74.18 (5)$ $C4-C5-H5$ 121.5	C7—N1		1.310 (3)	O2W-	H2W		0.83 (2)
C7—H7 0.9300 O5—Ba1—O5 ⁱ 155.56 (8)C2—C3—H3119.1O5—Ba1—O1W102.22 (4)C4—C3—H3119.1O5 ⁱ —Ba1—O1W102.22 (4)C5—C4—C3121.8 (2)O5—Ba1—O7 ⁱⁱ 116.89 (5)C5—C4—H4119.1O5 ⁱ —Ba1—O7 ⁱⁱ 74.18 (5)C3—C4—H4119.1O1W—Ba1—O7 ⁱⁱⁱ 64.88 (4)C4—C5—C6116.9 (2)O5—Ba1—O7 ⁱⁱⁱ 74.18 (5)C4—C5—H5121.5	C7—N2		1.345 (3)	O2W-	H3W		0.80 (2)
$O5-Ba1-O5^i$ 155.56 (8) $C2-C3-H3$ 119.1 $O5-Ba1-O1W$ 102.22 (4) $C4-C3-H3$ 119.1 $O5^i-Ba1-O1W$ 102.22 (4) $C5-C4-C3$ 121.8 (2) $O5-Ba1-O7^{ii}$ 116.89 (5) $C5-C4-H4$ 119.1 $O5^i-Ba1-O7^{ii}$ 74.18 (5) $C3-C4-H4$ 119.1 $O1W-Ba1-O7^{ii}$ 64.88 (4) $C4-C5-C6$ 116.9 (2) $O5-Ba1-O7^{iii}$ 74.18 (5) $C4-C5-H5$ 121.5	С7—Н7		0.9300				
O5-Ba1-O1W102.22 (4)C4-C3-H3119.1O5i-Ba1-O1W102.22 (4)C5-C4-C3121.8 (2)O5-Ba1-O7 ⁱⁱ 116.89 (5)C5-C4-H4119.1O5i-Ba1-O7 ⁱⁱ 74.18 (5)C3-C4-H4119.1O1W-Ba1-O7 ⁱⁱⁱ 64.88 (4)C4-C5-C6116.9 (2)O5-Ba1-O7 ⁱⁱⁱ 74.18 (5)C4-C5-H5121.5	O5—Ba1—O5 ¹		155.56 (8)	C2—C	С3—Н3		119.1
$O5^{i}$ —Ba1—O1W $102.22 (4)$ $C5$ —C4—C3 $121.8 (2)$ $O5$ —Ba1—O7 ⁱⁱ $116.89 (5)$ $C5$ —C4—H4 119.1 $O5^{i}$ —Ba1—O7 ⁱⁱ $74.18 (5)$ $C3$ —C4—H4 119.1 $O1W$ —Ba1—O7 ⁱⁱ $64.88 (4)$ $C4$ —C5—C6 $116.9 (2)$ $O5$ —Ba1—O7 ⁱⁱⁱ $74.18 (5)$ $C4$ —C5—H5 121.5	O5—Ba1—O1W		102.22 (4)	C4—0	С3—Н3		119.1
$O5-Ba1-O7^{ii}$ $116.89 (5)$ $C5-C4-H4$ 119.1 $O5^{i}-Ba1-O7^{ii}$ $74.18 (5)$ $C3-C4-H4$ 119.1 $O1W-Ba1-O7^{ii}$ $64.88 (4)$ $C4-C5-C6$ $116.9 (2)$ $O5-Ba1-O7^{iii}$ $74.18 (5)$ $C4-C5-H5$ 121.5	O5 ¹ —Ba1—O1W		102.22 (4)	C5—C	C4—C3		121.8 (2)
$O5^{i}$ —Ba1—O7 ⁱⁱ 74.18 (5)C3—C4—H4119.1 $O1W$ —Ba1—O7 ⁱⁱ 64.88 (4)C4—C5—C6116.9 (2) $O5$ —Ba1—O7 ⁱⁱⁱ 74.18 (5)C4—C5—H5121.5	O5—Ba1—O7 ⁱⁱ		116.89 (5)	C5—C	С4—Н4		119.1
$O1W$ —Ba1— $O7^{ii}$ 64.88 (4)C4—C5—C6116.9 (2) $O5$ —Ba1— $O7^{iii}$ 74.18 (5)C4—C5—H5121.5	O5 ⁱ —Ba1—O7 ⁱⁱ		74.18 (5)	C3—C	С4—Н4		119.1
O5—Ba1—O7 ⁱⁱⁱ 74.18 (5) C4—C5—H5 121.5	O1W—Ba1—O7 ⁱⁱ	i	64.88 (4)	C4—0	C5—C6		116.9 (2)
	O5—Ba1—O7 ⁱⁱⁱ		74.18 (5)	C4—C	С5—Н5		121.5
O5 ⁱ —Ba1—O7 ⁱⁱⁱ 116.89 (5) C6—C5—H5 121.5	O5 ⁱ —Ba1—O7 ⁱⁱⁱ		116.89 (5)	C6—0	С5—Н5		121.5
O1W—Ba1—O7 ⁱⁱⁱ 64.88 (4) N2—C6—C5 133.3 (2)	O1W—Ba1—O7 ⁱⁱ	ii	64.88 (4)	N2—0	C6—C5		133.3 (2)
O7 ⁱⁱ —Ba1—O7 ⁱⁱⁱ 129.77 (8) N2—C6—C1 104.79 (19)	O7 ⁱⁱ —Ba1—O7 ⁱⁱⁱ		129.77 (8)	N2—0	C6—C1		104.79 (19)
$O5-Ba1-O2W^i$ 100.92 (5) $C5-C6-C1$ 122.0 (2)	O5—Ba1—O2W ⁱ		100.92 (5)	С5—С	C6—C1		122.0 (2)
$O5^{i}$ —Ba1—O2W ⁱ 60.38 (5) N1—C7—N2 113.7 (2)	O5 ⁱ —Ba1—O2W	i	60.38 (5)	N1—0	C7—N2		113.7 (2)
$01W - Ba1 - 02W^{i}$ 136.05 (3) N1-C7-H7 123.1	O1W—Ba1— $O2V$	W ⁱ	136.05 (3)	N1—0	С7—Н7		123.1
$\Omega 7^{ii}$ —Ba1— $\Omega 2W^{i}$ 71.38 (5) N2—C7—H7 123 1	$O7^{ii}$ _Ba1_O2W	,i	71.38 (5)	N2—0	С7—Н7		123.1
$O7^{iii}_{III} = Ba1_{III} O2W^{i}$ 158 50 (5) $O5_{IIII} C8_{IIII} C9$ 123 43 (17)	$O7^{iii}$ _Ba1_O2W	<i>y</i> i	158 50 (5)	05-0	C8—C9		123 43 (17)
O5-Ba1-O2W 60.38 (5) O5-C8-C13 124.44 (17)	O_{5} —Ba1— $O_{2}W$	•	60.38 (5)	05-0	C8—C13		124.44 (17)
$O5^{i}$ —Ba1—O2W 100.92 (5) C9—C8—C13 112.11 (16)	O5 ⁱ —Ba1—O2W		100.92 (5)	C9—(C8—C13		112.11 (16)

136.05 (3)	C10—C9—C8	124.65 (17)
158.50 (5)	C10—C9—N3	116.22 (16)
71.38 (5)	C8—C9—N3	119.13 (16)
87.90 (6)	C9—C10—C11	118.37 (17)
56.00 (4)	С9—С10—Н10	120.8
121.80 (4)	C11—C10—H10	120.8
94.37 (4)	C10-C11-C12	121.58 (17)
63.55 (5)	C10—C11—N4	119.20 (18)
120.67 (5)	C12—C11—N4	119.21 (18)
69.10 (5)	C13—C12—C11	119.69 (17)
104.30 (5)	C13—C12—H12	120.2
121.80 (4)	C11—C12—H12	120.2
56.00 (4)	C12—C13—N5	116.40 (16)
94.37 (4)	C12—C13—C8	123.52 (17)
120.67 (5)	N5—C13—C8	120.06 (16)
63.55 (5)	C7—N1—C1	104.35 (18)
104.30 (5)	C7—N2—C6	107.51 (18)
69.10 (5)	C7—N2—H2A	126.2
171.26 (9)	C6—N2—H2A	126.2
44.8 (3)	O6—N3—O7	122.01 (17)
116.3 (3)	O6—N3—C9	120.42 (16)
129.2 (5)	O7—N3—C9	117.50 (16)
154.5 (4)	O9—N4—O8	122.71 (18)
68.5 (5)	O9—N4—C11	118.65 (19)
93.0 (5)	O8—N4—C11	118.64 (18)
15.7 (3)	O4—N5—O3	121.14 (18)
92.3 (3)	O4—N5—C13	118.16 (17)
82.1 (3)	O3—N5—C13	120.70 (16)
130.62 (18)	N5—O3—Ba1	144.86 (13)
119.76 (19)	C8—O5—Ba1	151.16 (13)
109.62 (18)	N3—O7—Ba1 ⁱⁱⁱ	147.01 (14)
117.8 (2)	Ba1—O1W—H1W	130 (4)
121.1	Ba1—O2W—H2W	131.0 (19)
121.1	Ba1—O2W—H3W	90.9 (18)
121.7 (2)	H2W—O2W—H3W	104.2 (19)
	136.05 (3) 158.50 (5) 71.38 (5) 87.90 (6) 56.00 (4) 121.80 (4) 94.37 (4) 63.55 (5) 120.67 (5) 69.10 (5) 104.30 (5) 121.80 (4) 56.00 (4) 94.37 (4) 120.67 (5) 63.55 (5) 104.30 (5) 69.10 (5) 171.26 (9) 44.8 (3) 116.3 (3) 129.2 (5) 154.5 (4) 68.5 (5) 93.0 (5) 15.7 (3) 92.3 (3) 82.1 (3) 130.62 (18) 119.76 (19) 109.62 (18) 117.8 (2) 121.1 121.7 (2) $(10,1)^{2}$ ($(10,1)^{2}$ ($(10,1)^{2}$)	136.05 (3) $C10-C9-C8$ 158.50 (5) $C10-C9-N3$ 71.38 (5) $C8-C9-N3$ 87.90 (6) $C9-C10-C11$ 56.00 (4) $C9-C10-H10$ 121.80 (4) $C11-C10-H10$ 94.37 (4) $C10-C11-C12$ 63.55 (5) $C10-C11-N4$ 120.67 (5) $C12-C11-N4$ 69.10 (5) $C13-C12-H12$ 121.80 (4) $C11-C12-H12$ 121.80 (4) $C11-C12-H12$ 56.00 (4) $C12-C13-N5$ 94.37 (4) $C12-C13-C8$ 120.67 (5) $N5-C13-C8$ 63.55 (5) $C7-N1-C1$ 104.30 (5) $C7-N2-H2A$ 171.26 (9) $C6-N2-H2A$ 44.8 (3) $O6-N3-O7$ 116.3 (3) $O6-N3-C9$ 129.2 (5) $O7-N3-C9$ 154.5 (4) $O9-N4-C11$ 93.0 (5) $O8-N4-C11$ 15.7 (3) $O4-N5-O3$ 92.3 (3) $O4-N5-C13$ 82.1 (3) $O3-N5-C13$ 130.62 (18) $N5-O3-Ba1$ 19.76 (19) $C8-O5-Ba1$ 109.62 (18) $N3-O7-Ba1^{111}$ 17.8 (2) $Ba1-O1W-H1W$ 121.1 $Ba1-O2W-H2W$ 121.1 $Ba1-O2W-H3W$

Symmetry codes: (i) -x, y, -z+1/2; (ii) x, -y+1, z-1/2; (iii) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1W—H1W···O2W ^{iv}	0.80 (2)	2.02 (2)	2.816 (2)	171 (6)
O2W—H2W…N1 ⁱ	0.83 (2)	1.98 (2)	2.812 (2)	174 (2)
O2W—H3W…O5	0.80 (2)	2.16 (2)	2.768 (2)	133 (2)
O2W—H3W…O6	0.80 (2)	2.34 (2)	3.058 (2)	148 (2)

N2—H2A···O8^v 0.86 2.13 2.987 (2) 174 Symmetry codes: (iv) -x, y-1, -z+1/2; (i) -x, y, -z+1/2; (v) -x+1/2, -y+3/2, -z+1.

Fig. 1

Fig. 2

